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ability fPi to each element. Often the Pi are 

simple numbers, perhaps integers, associated with 
the elements. 

Most statistical theory is based on assuming 
simple random distribution of the sample elements. 
However, that assumption is only justified when 
either the population distribution is random or 
the sample design is simple random. Generaliza- 
tions are needed for broader classes of samples 
in practical use. A broad class of design is 
epsem: each population element Yi , ( i = 1, 

2, ..., N), has the same selection probability 
f. A broader class of designs is probability 
sampling: each population element has a known 
selection probability fPi- -with and Pi known 

and positive. We show that for all epsem 
E(y) fY, where y = E (j = 2, ..., n) 

is the sample total. Similarly E(E y. /p.) = 
J J 

for all probability samples. We also have 
E(y /n) = for all epsem, if is a fixed 
constant. If n is a variate, with E(n) = fN, 
y/n is a ratio mean; similarly for 
E[(E y /(E 1 /p )]. These results also apply 

to powers Yi Xi, and other functions = g(Xi) 

of the population variables, and to vectors 
Yi = g(Xi, ..., Z). For example, we have 

E(E = Y2. From this we also obtain 

/n - (y /n)2] = a2 - Var(ÿ) for all epsem 

(exactly if n is fixed). 

1. General Statement 

Consider a population of N elements, and 
a variable Yi associated with each element 

(i = 1, 2, ..., N). The population total is 
Y - E and the population mean is 

Probability sampling is a selection method, an 
operation which insures that the expected 
appearance in the sample for the ith element is 
Pi, a known positive number. When sampling 

without replacement of elements, the ith element 
appears either once or not at all; then Pi also 

represents the probability of selection of the 
ith element. 

It is convenient to represent Pi by its 

equivalent fPi, where f is a known positive 

constant, a selection factor common to all 
elements. The Pi are positive values known for 

each element in the population. Thus probability 
sampling without replacement of elements is an 
operation which assigns a known positive 
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For example, British households may be 

selected by applying the f = 1 /1000 to the 

electoral list; the Pi denote the number of 

electors from the ith household on the electoral 
list. Or, we may select area segments with 

1 /1000, then subselect large, medium and small 
farms with 1 /1, 1/5, and 1/20; here f 1/20,000, 

and the Pi take values of 20, 4, and 1. The 

selection factor f may be applied in different 
ways; the definitions and their consequences will 
hold. One may select every Fth listing, where 

f = 0; one may select n listings at random, 
where n = fN; or one may assign the probability 
f independently to each of the N listings. The 
selection is often more complex; multistage and 
multiphase designs may be used, with stratifica- 
tion and other techniques introduced at each 
stage. Nevertheless, the overall selection 
factor f is carefully controlled in probability 
samples. 

A selection is epsem (equal probability 
selection method) when the selection probability 
is the same known constant f for all elements; 
that is, Pi = 1 for all i. When sampling 

elements with replacement, an element may appear 
more than once in the sample, and we substitute 
expected appearance for selection probability in 
the definition. 

The number of sample elements is n, and the 
simple total of a variable present in a sample 
is = E in epsem (j 1, 2, ..., n). The 

analogous simple total for other probability 
samples is E here and denote 

j 

the values Yi and Pi where the jth sample 

element is the ith population element. This 
simple total is not the only possible estimator, 
but it is the one most frequently used in 
practice. It might be called the simple or 
symmetrical estimator, and it has theoretical 
justifications beyond its simplicity and 
naturalness. For all probability samples we 
have directly the simple relation 

E(yc) = fY. (1) 

This relationship follows directly from the 
definition of probability sampling, and from the 
basic relationship for a sum of random variables: 
E(E yj) E E(y j), (see section 5). Most 

statistical theory also assumes independence 
between the j selections, but that independence 
is lacking complex selections. Contrariwise 
our aim is to find some useful results based on 
(1) alone, without assuming the independence of 
observations. 
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This and related results have wide utility. 
It is usually easy to state for a sample design 
if it is an epsem or a probability sample. The 
above relations, and others similar to them, 
then follow immediately, without having to 
derive them separately for the great variety of 
specific designs that are widely utilized for 
selecting samples. Many of these designs are 
complex, involving several stages with stratifi- 
cation at each stage, with random or systematic 
selection; multiphase sampling or controlled 
selection may also be used. With all their 
complexity, the desired overall selection 
probability of elements is maintained at fPi in 

probability samples, with operations based 

typically on tables of random numbers. These 
operations are readily specified with practical 
office and field procedures. 

Several other relations can be also derived 
easily from the above. When the sample size n 
is a fixed constant, the sample mean = y/n is 
an unbiased estimate of 4, because n = fN, and 

E(y/n) = E(y)/n = = Y. (2) 

Epsem with fixed n occurs in many varieties 
of element sampling, and in the sampling and 
subsampling of equal clusters. For all of these 
varieties of sampling the unbiasedness of y/f 
and y/n follows immediately without having to 
derive them laboriously and separately for the 

many types current in theory and practice. 

Epsem with variable n occurs with unequal 
sized clusters; also when dealing with subclasses. 
For these, y/f is still unbiased, but y/n is 
generally not. With a fixed sampling fraction f, 

we have E(n) fN, and E(y /f) /E(y /f) = Y/N = Y. 
However, 7 = y/n is a ratio mean (the ratio of 
two random variables) and E(ÿ) / in general. 
Nevertheless, the ratio mean is widely employed 
and preferred. 

The situation is similar for probability 
samples which are not epsem; when the selection 
probabilities are fPi. Note that E(E 1 /p j) fN; 

this is but a special case of (1), when Yi = 1 

for all i. The commonly preferred mean is a 
ratio mean similar to the mean above 

E and E(E 
fy 

1 
fN E Ea 

(3) 

but E(ÿ) generally. The ratio mean y/n in 
epsem with variable n may be considered a special 
case of (3). Ratio means generally are accepted 
either as adequate approximations or as preferred 
statistics. My concentration on unbiased 
estimates and expectations is forced by the 
limitations of my capabilities and of the 
development of survey sampling literature. 
Although unbiasedness is given a prominent role, 
it is usually abandoned for the most important 
designs of survey sampling, such as unequal 
clusters. It is possible to make the analysis 
conditional on the denominator (n or ,) Pi 

found in the sample. This may also be done 

within the frame of likelihood functions instead 

of sampling distributions [Birnbaum, 1962; 

Raiffa, and Schlaifer, 1961]. 

2. Some Applications 

Other important relations, similar to 
E(y) = may be derived for all probability 
samples. The nature of Yi was not and need not 

be restricted. It may represent Yi = or 

Yi It may represent some 

function of the element values, or a function 
of several variables: 

this should be confined, I suppose, to real, 

finite, single -valued functions of the vector of 
variables defined on individual elements. Since 

may also represent the binomial variable 

Xi < K, where K is any fixed constant, it follows 

that the cumulative distribution function of the 
sample maintains the proportionality f to that 

of the population. 

The importance of the principle can be 
illustrated by obtaining a much -needed result: 
estimates of the population variance from any 

epsem or other probability sample. From the 
sample we construct n, y y., and E 

either self -weighted or properly weighted, 
(E 1 /p., yj and E Since 

E(n) = fN, and E(y) = fY, and E(E y2) = 

we get 

n 22 
E(j ( 

f(E Ñ2) 
i 

Thus 

E(nv2) = - 
y (4) 

where = /n - 32) (n - 1)s /n. We 

should like also to express the expectation of 
this element variance in the sample. When n is 
fixed at for the sample, we have directly that 

E( = ay 
()221 

Var(Y), 

and 

E[ + = when E[var(y)] Var(y). 

When n is not actually fixed, the analysis 
may be made conditional on a fixed n, and arrive 
at essentially the same result. Furthermore, it 

can be shown that the bias is bound to be usually 
small for considered as a ratio mean. 

Hence, 



E(n 
Y 

E(n) E(y n fN N 

. 

n fN n fN 

(6) 

The second term becomes Var(y /n) for fixed 
and it should approach the mean - square -error 

of when n is not fixed. Generally then 
+ mse(). computed from the sample will be a 

good estimate of (or among the population 

elements. 

Var(ÿ) is roughly for many designs, 

and then s2 /(n - 1) (E - y2 /n) /(n - 1) 

may be employed to estimate a2. For the special 

case for simple random sampling, when 
Var(ÿ) = (1- E(s2) = S2 follows 

immediately. 

This result has great practical utility --and 
provided my chief motivation for this effort. 
Survey samplers find it useful to compute the 
ratio of the actual variance of a complex sample 
to the variance that a simple random sample 
based on the same number n of elements would 
have had. I called (Kish, 1965, 8.2] this the 
"design effect ": 

deft 
(1 

Here then we may estimate v2 + var(ÿ). 

Often s2 = nv2y/(n - 1) will serve well enough. 

Errors in estimating the second term of the 
denominator are smaller by the factor 1/n than 
the errors in estimating the numerator. 

(7) 

Methods -for estimating the population 
covariance ayx between two variables Yi and Xi 

are similar to those for estimating the population 
variance aÿ. Hence [vyx + cov(ÿ, x)] should be 

a good estimate, and syx often an acceptable 

approximation. 

Then it should follow that the correlation 
coefficient Ryx can be well estimated 

from similar statistics. We may use 
+ cov(ÿ, X)]/ /v2 + var(ÿ) + var(X) 

and often merely yvx, computed from any 

probability sample. These kinds of analytical 
statistics are frequently computed from complex 
probability samples, but without adequate (or 
any )justification --so far as I know. 

3. Some Questions 

Justification can be found, I believe, in 
the symmetry and proportionality of the sampling 
distribution of any epsem selection to the 
distribution of population elements. Those 
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symmetries also hold for probability samples 

properly weighted with the 1/pi values. I hope 

that others will obtain derivations of needed 

statistics for probability samples which are now 
available only for simple random samples. 

Simple random sampling, with or without 
replacement, is often called "random sampling," 
or merely "sampling" in the statistical 
literature. "Complex" in the title refers to 

other types of probability sampling. Other 
epsem methods represent suppression of most of 

the (N) combinations equally probably in simple 

random sampling. Yet they preserve the symmetry 

of equal selection probability of for each 
element through equal numbers or expectations of 
the combinations in which it appears. Analogous 
properties of probability sampling, when not 
epsem, are more complex because they require the 

weights Pi. This symmetry is well known and 

exploited for simple random sampling, but not for 
other selection methods. 

The symmetries of probability samples 
resemble those of simple random samples, and the 
sample moments will be similar to those of the 

population. What is missing from nonrandom 
samples is the independence of individual 
observations of random samples. In complex 
samples the observations are not independent, 
and the correlation between sample values may 
have serious effects. Hence, although is a 

good estimate of Y, and of the variance 

of may be greater than /n. Similarly, 

the sampling variabilities of other statistics 
computed from complex samples may differ greatly 
from those of simple random selections. 

I believe these results are important for 

three reasons. First, to prove that E(ye) 

consumes a half -page or pagesfor each of several 
types of the selection designs described in 
sampling textbooks. Second, these proofs imply 
that the reader must behave similarly when 
faced with other, perhaps more complicated 
designs. For example, a multistage design with 
stratification and systematic sampling at each 
stage may look formidable to the unwary; a 

"controlled selection" even worse. Instead one 
may say directly that "E(ye) fY, because ye 

was based on a probability sample." Third, 
results are needed and can be had for other 
valuable statistics -- similar to s2 as estimator 
of S2. y 

If the results are so important, and the 
method is so basic and simple, why has it been 
missed by mathematical statisticians? Because 
in their derivations they assume the independence 
of sample observations needlessly and too early. 
They ignore other methods of probability sampling, 
and assume simple random sampling without further 
thought. For example, instead of deriving a 
result in terms of Var(ÿ), they write it in 
terms of ay/,/n. When simple random selection 
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(independence of selection or observation) is 

unstated, a necessary condition has been omitted. 
When that assumption is stated, although it is 

sufficient, it may be an unnecessarily narrow 
restriction on the results. 

For example, the variance of the function 
of several random normal variates is stated in 

a1 
terms of the covariance matrix 

J 

in the best books [Rao, 1952]. This result 
follows also for complex samples, if stated in 
terms of ÿj) instead of a /in [see 

Kendall and Stuart, 1958, 10.6]. 

To assume that the sample observations are 
random when the selection is complex, amounts to 

assuming that the population distribution is 
random. This is never exactly true, and --more 
important --it is often far from true. 

Some Extensions 

For an extension of probability sampling 
we coin the term randomized sampling: when the 
Pi are known, but the selection constant may be 

either known f or unknown f'. The selection 
probabilities of elements may be known (Pi) 

proportionately to each other, but with the 
common unknown factor f'. If Pi = 1 we have 

an equal choice selection method (escem), an 
extension of epsem. Many results for probability 
(and epsem) sampling can be extended to 
randomized (and escem) sampling. 

The selection constant f' may be unknown in 
two important classes of problems: "urns" of 

unknown sizes and hypothetical universes. First, 
consider a list containing N + B listings; the 

presence of a number B of "blank" (empty) 
listings may render the number of elements 
unknown even if the list total N + B is known. 
For example, on the British electoral list 
families can be associated with uniquely defined 
family heads, but their numbers will remain 
unknown. Most lists assume this aspect when we 
analyse a subclass whose size is unknown. If 
f is fixed and known for the entire list, it 
will be also for the subclass, but the subclass 
size n becomes a random variable. On the other 
hand, if is fixed (with unknown) becomes 
unknown. Of the three quantities involved in 
f = n/k, if two are fixed, so is the third, but 
a pair may remain not fixed together. Second, f' 
becomes unknown when inference from the results 
of a sampled population are extended to a larger, 
hypothetical, and indefinite universe with an 
assumed similar distribution of the variable Y . 

When the unknown f' may be considered an unknown 
constant, and when it must be treated as a 
random variable, we shall not consider here. 

Note the vital fact that subclasses inherit 
from the entire sample the four broad classes of 
selection we discussed: epsem, equal chance, 

probability or randomized sampling. Therefore, 

the results above for an entire sample also holds 

for its subclasses. Fixed sample size, however, 

is not inherited generally by subclasses. But 

for this exception, simple random sampling is 

also inherited by the subclasses. On the other 
hand, other, complex, selection types --such as 

stratified, systematic selection, or equal sized 

clusters --are not generally inherited by 

subclasses. 

5. Derivation of E(ya) 

Some colleagues, skeptical about the direct 

validity of (1) for all probability samples, 

demand some proof. Several others have pointed 

to as many distinct proofs, each with some claim 

for preference and reference. Still others say 

that no proof is necessary, since the basic rule 

about the expectation of a sum of random variables 

established E(yc) = fY for probability sampling 

directly after its definition. The following 

brief derivation may clarify the situation, and 

distinguish the established truth from other 

things which only resemble it. 

We define C, the set of all possible 

samples under a specified sampling plan 

applied to a population, and assume that C is 

finite. is the probability of obtaining 

sample c; hence W = 1, summed over the 
cEC c 

entire distribution. 

Let Sic represent the number of times the 

ith element appears in sample c; = k when 

the ith element appears k times in sample c. 

When sampling with replacement, k may be 1, 2, 

n. When sampling elements without replace- 
ment Sic = 1 or Sic = 0, if the sample does or 

does not contain the ith element. Thus Sic is 

a random variable associated with the ith popula- 

tion element representing its number of 
appearances. The expected number of appearances 
of the ith element is 

) = 
i 

for all probability (8) 
is 

c 
cis 

samples 

and 

E(Sic) f, for all epsem. 

Best known of epsem methods is simple random 

sampling: when each of the (n) possible 

combinations receive the same selection probabil- 
ity, = 1 /(ñ). Each of the N elements appears 

in (N -1) combinations; thus the selection 

probability of each element is perceived as 

(n- 1)/(n) 
n/N. There are combinations 

which contain the ith element, when Sic = 1. In 

the other possible combinations 
is 

and 

their number is (n) (n1) 
The 



expectation of bic is E(bic) 
= ((n -1) 1 

+ (n - 1)(n -1) 01 = (n- 
= n/N, for 

all i. 

The random variable associated with the ith 

element is the number of its appearances in 

the sample; whereas its value remains constant at 
Yi. The contribution of the ith population 

element to the sample is the product of 

its constant value Y with the random variable 

that represents its appearance in the sample. 

The expected contribution of the ith element is 

E(SicY.) = c = Yi c bicWc 

= Yi E(bic) = YifPi, for all probability 
sampling, (9) 

and 

E(bicYi) Yif for all epsem. 

The sample total represents the sum of 
contributions for all those population elements 
which appear in the sample: 

= 
y./p. E (10) 
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Its expected value is 

E(yc) (Yi/Pi)E(bic) 

= (Yi/Pi)(Pif) = (11) 
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